注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

人性的感悟与舒展

 
 
 

日志

 
 

模糊数学  

2017-08-05 12:00:42|  分类: 课堂教学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
模糊数学
编辑 锁定
模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。
由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析模糊模式识别模糊综合评判模糊决策与模糊预测、模糊控制模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。
中文名
模糊数学
外文名
Fuzzy math
又    称
Fuzzy 数学
解    释
研究处理模糊性现象数学理论
时    间
1965年以后

目录
1 定义
2 产生
3 研究内容
4 应用
5 应用前景
6 在中国

模糊数学定义
编辑
1965年以后,在模糊集合模糊逻辑的基础上发展起来的模糊拓扑、模糊测度论等数学领域的统称。是研究现实世界中许多界限不分明甚至是很模糊的问题的数学工具。在模式识别、人工智能等方面有广泛的应用。在1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。
从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如模糊拓扑学、不分明线性空间、模糊代数学、模糊分析学、模糊测度积分、模糊、模糊范畴、模糊图论、模糊概率统计模糊逻辑学等。其中有些领域已有比较深入的研究。
模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析模糊模式识别模糊综合评判模糊决策与模糊预测、模糊控制模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统知识工程等方面,在各个领域中发挥着非常重要的作用,并已获得巨大的经济效益。

模糊数学产生
编辑
现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在于它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都有可能纳入集合描述的数学框架。
但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属
控制论模型控制论模型
于待发展的范畴。
在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。
各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。
我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。
在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。这些概念是不可以简单地用是、非或数字来表示的。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。
人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。
但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。
模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支。它以“模糊集合”论为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具。它既可用于“硬”科学方面,又可用于“软”科学方面。
模糊数学由美国控制论专家L.A.扎德(L.A.Zadeh,1921--)教授所创立。他于1965年发表了题为《模糊集合论》(《FuzzySets》)的论文,从而宣告模糊数学的诞生。L.A.扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能象人脑那样进行灵活的思维与判断问题。尽管计算机记忆超人,计算神速,然而当其面对外延不分明的模糊状态时,却“一筹莫展”。可是,人脑的思维,在其感知、辨识、推理、决策以及抽象的过程中,对于接受、贮存、处理模糊信息却完全可能。计算机为什么不能象人脑思维那样处理模糊信息呢?其原因在于传统的数学,例如康托尔集合论(Cantor′sSet),不能描述“亦此亦彼”现象。集合是描述人脑思维对整体性客观事物的识别和分类的数学方法。康托尔集合论要求其分类必须遵从形式逻辑的排中律,论域(即所考虑的对象的全体)中的任一元素要么属于集合A,要么不属于集合A,两者必居其一,且仅居其一。这样,康托尔集合就只能描述外延分明的“分明概念”,只能表现“非此即彼”,而对于外延不分明的“模糊概念”则不能反映。这就是现时计算机不能象人脑思维那样灵活、敏捷地处理模糊信息的重要原因。为克服这一障碍,L.A.扎德教授提出了“模糊集合论”。在此基础上,现今已形成一个模糊数学体系。
模糊数学产生的直接动力,与系统科学的发展有着密切的关系。在多变量、非线性、时变的大系统中,复杂性与精确性形成了尖锐的矛盾。L.A.扎德教授从实践中总结出这样一条互克性原理:“当系统的复杂性日趋增长时,我们作出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特性。”这就是说,复杂程度越高,有意义的精确化能力便越低。复杂性意味着因素众多,时变性大,其中某些因素及其变化是人们难以精确掌握的,而且人们又常常不可能对全部因素和过程都进行精确的考察,而只能抓住其中主要部分,忽略掉所谓的次要部分。这样,在事实上就给对系统的描述带来了模糊性。“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。”因此,必须寻找到一套研究和处理模糊性的数学方法。这就是模糊数学产生的历史必然性。模糊数学用精确的数学语言去描述模糊性现象,“它代表了一种与基于概率论方法处理不确定性和不精确性的传统不同的思想,……,不同于传统的新的方法论”。它能够更好地反映客观存在的模糊性现象。因此,它给描述模糊系统提供了有力的工具。
L.A.扎德教授于1975年所发表的长篇连载论著《The Concept of a Linguistic Variable & Its Application to Approximate Reasoning》(中文译本为:模糊集合、语言变量及模糊逻辑),提出了语言变量的概念并探索了它的含义。模糊语言的概念是模糊集合理论中最重要的发展之一,语言变量的概念是模糊语言理论的重要方面。语言概率及其计算、模糊逻辑及近似推理则可以当作语言变量的应用来处理。人类语言表达主客观模糊性的能力特别引人注目,或许从研究模糊语言入手就能把握住主客观的模糊性、找出处理这些模糊性的方法。有人预言,这一理论和方法将对控制理论、人工智能等作出重要贡献。
模糊数学诞生至今仅有50年历史,然而它发展迅速、应用广泛。它涉及纯粹数学、应用数学、自然科学、人文科学和管理科学等方面。在图象识别、人工智能、自动控制、信息处理、经济学、心理学、社会学、生态学、语言学、管理科学、医疗诊断、哲学研究等领域中,都得到广泛应用。把模糊数学理论应用于决策研究,形成了模糊决策技术。只要经过仔细深入研究就会发现,在多数情况下,决策目标与约束条件均带有一定的模糊性,对复杂大系统的决策过程尤其是如此。在这种情况下,运用模糊决策技术,会显得更加自然,也将会获得更加良好的效果。

模糊数学研究内容
编辑
现代计算机的计算速度及贮存能力几乎达到了无与伦比的程度,它不仅可以解决复杂的数学问题,还可以参与控制航天飞机等。既然计算机有如此威力,那么为什么在判断和推理方面有时不如人脑呢? 美国加利福尼亚大学Zadeh(扎德)教授仔细的研究了这个问题,以至于他在科研工作中经常回旋与“人脑思维”、“大系统”与“计算机”的矛盾之中。1965年,他发表了论文《模糊集合论》“隶属函数”这个概念来描述现象差异中的中间过渡,从而突破了古典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着模糊数学这门学科的诞生。
模糊数学的研究内容主要有以下三个方面:
第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。
查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法
在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。
第二,研究模糊语言学和模糊逻辑。
人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。
为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。
如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。现时,模糊语言还很不成熟,语言学家正在深入研究。
人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。
为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到
多值逻辑基础上,研究模糊逻辑。现时,模糊逻辑还很不成熟,尚需继续研究。
第三,研究模糊数学的应用。
模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,
查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,现今已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。

模糊数学应用
编辑
模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊智能化 

智能化聚类分析、模糊决策、模糊评判系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。
现时,世界上发达国家正积极研究、试制具有智能化模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。

模糊数学应用前景
编辑
模糊数学是研究现实中许多界限不分明问题的一种数学工具,其基本概念之一是模糊集合。利用模糊数学和模糊逻辑,能很好地处理各种模糊问题。
模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。
50年来,模糊数学的研究和应用取得了许多可喜的成就。它在科学技术领域和日常生活方面正在扮演着越来越重要的角色。值得一提的是,中国著名学者周海中教授曾指出:“模糊数学的诞生,是科学技术发展的必然结果,更是现代数学发展的必然产物。但就现状而言,模糊数学的理论尚未成熟、体系还未形成,对它也还存在不同看法和意见;这些都有待日后完善和实践检验。”[1] 

模糊数学在中国
编辑
在美国,日本,法国等世界数学强国相继研究模糊数学,并取得一些阶段性的进展的同时,1976年中国开始注意模糊数学的研究,世界著名模糊学家考夫曼(A.kaufman,法国)、山泽(E.SanchZ.法国)、营野(日本)和美籍华人P.P.Z等先后来华讲学,推动了我国模糊数学的高速发展,很快就拥有一支较强的研究队伍。1980年成立了中国模糊集与系统协会。1981年,创办《模糊数学》杂志,1987年,创办了《模糊系统与数学》杂志。还出版过大量的颇有价值的论著。例如:汪培庄教授所著《模糊集与随机集落影》,《模糊集合论及其应用》,张文修教授编著的《模糊数学基础》等。1988年我国汪培庄教授指导几位博士生研制成功了一台模糊推理机-----分立元件样机。它的推理速度为1500万次/秒,这表明中国在突破模糊信息处理难关方面迈出重要一步。中国科研人员在Fuzzy领域中取得了卓越成就。何新贵院士将Fuzzy方面的论文在国内外权威杂志上发表。这标志着中国研究已经达到国内外先进水平。至此,中国已成为全球四大模糊数学研究中心之一。(美国,西欧,中国,日本)
著名语言学家伍铁平教授发表了经典论文《模糊语言初探》,引起了人文与社会科学界对模糊语言现象的关注和研究。伍铁平教授是中国首先提出“模糊语言学”这一概念并从事具体的模糊语言现象研究的学者;模糊语言学是所有与模糊性有关的学科中最令人关注的学科之一。他撰写的专著《模糊语言学》在业内影响很大,评价很高,多次获奖。
2005年,是一个值得中国所有模糊研究人员和学者庆祝的一个丰收年,在这个丰收年里有两件值得庆祝的大事。一,经国际模糊系统协会(IFSA)专家评审,最终确定授予中国四川大学副校长刘应明院士“FuzzyFellow奖”。“FuzzyFellow奖”是模糊数学领域的最高奖项,专门授予得到国际公认的,在模糊数学领域做出杰出贡献的科学家。
二,2005年8月20日,中国运筹会Fuzzy信息与工程分会正式成立。Fuzzy信息与工程分会成立,是隶属于全国两大数学方向的一级学会之一------中国运筹会,表明Fuzzy数学在中国已取得了应有的地位,尤其是Fuzzy数学的创始人扎德教授的出席会议,中国运筹学会理事长,中国科学院数学与系统科学研究院副院长袁亚湘教授和广州大学校长廖建设教授为学会揭牌,这给成立大会增添的极大的光彩。也极大的鼓舞了全国Fuzzy研究工作者。Fuzzy信息与工程分会的宗旨:在完善和加强Fuzzy集理论研究的同时,更侧重于Fuzzy技术的应用和Fuzzy产品的开发研究。
注:1、广州大学校长为庾建设。
2、中国运筹会Fuzzy信息与工程分会首任理事长为广州大学曹炳元教授。
  评论这张
 
阅读(25)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017